A*
本页面将简要介绍 A*算法。
简介¶
A*搜索算法(英文:A*search algorithm,A*读作 A-star),简称 A*算法,是一种在图形平面上,对于有多个节点的路径求出最低通过成本的算法。它属于图遍历(英文:Graph traversal)和最佳优先搜索算法(英文:Best-first search),亦是 BFS 的改进。
定义起点
A*算法每次从优先队列中取出一个
如果
上述条件下,如果
当
例题¶
八数码
题目大意:在
1 2 3 | 123
804
765
|
解题思路
容易发现
参考代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | #include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
#include <set>
using namespace std;
const int dx[4] = {1, -1, 0, 0}, dy[4] = {0, 0, 1, -1};
int fx, fy;
char ch;
struct matrix {
int a[5][5];
bool operator<(matrix x) const {
for (int i = 1; i <= 3; i++)
for (int j = 1; j <= 3; j++)
if (a[i][j] != x.a[i][j]) return a[i][j] < x.a[i][j];
return false;
}
} f, st;
int h(matrix a) {
int ret = 0;
for (int i = 1; i <= 3; i++)
for (int j = 1; j <= 3; j++)
if (a.a[i][j] != st.a[i][j]) ret++;
return ret;
}
struct node {
matrix a;
int t;
bool operator<(node x) const { return t + h(a) > x.t + h(x.a); }
} x;
priority_queue<node> q; //搜索队列
set<matrix> s; //防止搜索队列重复
int main() {
st.a[1][1] = 1; //定义标准表
st.a[1][2] = 2;
st.a[1][3] = 3;
st.a[2][1] = 8;
st.a[2][2] = 0;
st.a[2][3] = 4;
st.a[3][1] = 7;
st.a[3][2] = 6;
st.a[3][3] = 5;
for (int i = 1; i <= 3; i++) //输入
for (int j = 1; j <= 3; j++) {
scanf(" %c", &ch);
f.a[i][j] = ch - '0';
}
q.push({f, 0});
while (!q.empty()) {
x = q.top();
q.pop();
if (!h(x.a)) { //判断是否与标准矩阵一致
printf("%d\n", x.t);
return 0;
}
for (int i = 1; i <= 3; i++)
for (int j = 1; j <= 3; j++)
if (!x.a.a[i][j]) fx = i, fy = j; //如果该点上的数不为0
for (int i = 0; i < 4; i++) { //对四种移动方式分别进行搜索
int xx = fx + dx[i], yy = fy + dy[i];
if (1 <= xx && xx <= 3 && 1 <= yy && yy <= 3) {
swap(x.a.a[fx][fy], x.a.a[xx][yy]);
if (!s.count(x.a))
s.insert(x.a),
q.push({x.a, x.t + 1}); //这样移动后,将新的情况放入搜索队列中
swap(x.a.a[fx][fy], x.a.a[xx][yy]); //如果不这样移动的情况
}
}
}
return 0;
}
|
k 短路
按顺序求一个有向图上从结点
解题思路
很容易发现,这个问题很容易转化成用 A*算法解决问题的标准程式。
初始状态为处于结点
就这样,我们在预处理的时候反向建图,计算出结点
由于设计的距离函数和估价函数,每个状态需要存储两个参数,当前结点
我们可以在此基础上加一点小优化:由于只需要求出第
参考代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | #include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int maxn = 5010;
const int maxm = 400010;
const double inf = 2e9;
int n, m, k, u, v, cur, h[maxn], nxt[maxm], p[maxm], cnt[maxn], ans;
int cur1, h1[maxn], nxt1[maxm], p1[maxm];
double e, ww, w[maxm], f[maxn];
double w1[maxm];
bool tf[maxn];
void add_edge(int x, int y, double z) { //正向建图函数
cur++;
nxt[cur] = h[x];
h[x] = cur;
p[cur] = y;
w[cur] = z;
}
void add_edge1(int x, int y, double z) { //反向建图函数
cur1++;
nxt1[cur1] = h1[x];
h1[x] = cur1;
p1[cur1] = y;
w1[cur1] = z;
}
struct node { //使用A*时所需的结构体
int x;
double v;
bool operator<(node a) const { return v + f[x] > a.v + f[a.x]; }
};
priority_queue<node> q;
struct node2 { //计算t到所有结点最短路时所需的结构体
int x;
double v;
bool operator<(node2 a) const { return v > a.v; }
} x;
priority_queue<node2> Q;
int main() {
scanf("%d%d%lf", &n, &m, &e);
while (m--) {
scanf("%d%d%lf", &u, &v, &ww);
add_edge(u, v, ww); //正向建图
add_edge1(v, u, ww); //反向建图
}
for (int i = 1; i < n; i++) f[i] = inf;
Q.push({n, 0});
while (!Q.empty()) { //计算t到所有结点的最短路
x = Q.top();
Q.pop();
if (tf[x.x]) continue;
tf[x.x] = true;
f[x.x] = x.v;
for (int j = h1[x.x]; j; j = nxt1[j]) Q.push({p1[j], x.v + w1[j]});
}
k = (int)e / f[1];
q.push({1, 0});
while (!q.empty()) { //使用A*算法
node x = q.top();
q.pop();
cnt[x.x]++;
if (x.x == n) {
e -= x.v;
if (e < 0) {
printf("%d\n", ans);
return 0;
}
ans++;
}
for (int j = h[x.x]; j; j = nxt[j])
if (cnt[p[j]] <= k && x.v + w[j] <= e) q.push({p[j], x.v + w[j]});
}
printf("%d\n", ans);
return 0;
}
|
参考资料与注释¶
-
此处的 h 意为 heuristic。详见 启发式搜索 - 维基百科 和 A*search algorithm - Wikipedia 的 Bounded relaxation 一节。 ↩
build本页面最近更新:,更新历史
edit发现错误?想一起完善? 在 GitHub 上编辑此页!
people本页面贡献者:OI-wiki
copyright本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用