LGV 引理
简介¶
Lindström–Gessel–Viennot lemma,即 LGV 引理,可以用来处理有向无环图上不相交路径计数等问题。
前置知识:图论相关概念 中的基础部分、矩阵、高斯消元求行列式。
LGV 引理仅适用于 有向无环图。
定义¶
起点集合
终点集合
一组
引理¶
其中
证明请参考 维基百科。
例题¶
hdu5852 Intersection is not allowed!
题意:有一个
观察到如果路径不相交就一定是
从
行列式可以使用高斯消元求。
复杂度为
参考代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | #include <algorithm>
#include <cstdio>
typedef long long ll;
const int K = 105;
const int N = 100005;
const int mod = 1e9 + 7;
int T, n, k, a[K], b[K], fact[N << 1], m[K][K];
int qpow(int x, int y) {
int out = 1;
while (y) {
if (y & 1) out = (ll)out * x % mod;
x = (ll)x * x % mod;
y >>= 1;
}
return out;
}
int c(int x, int y) {
return (ll)fact[x] * qpow(fact[y], mod - 2) % mod *
qpow(fact[x - y], mod - 2) % mod;
}
int main() {
fact[0] = 1;
for (int i = 1; i < N * 2; ++i) fact[i] = (ll)fact[i - 1] * i % mod;
scanf("%d", &T);
while (T--) {
scanf("%d%d", &n, &k);
for (int i = 1; i <= k; ++i) scanf("%d", a + i);
for (int i = 1; i <= k; ++i) scanf("%d", b + i);
for (int i = 1; i <= k; ++i) {
for (int j = 1; j <= k; ++j) {
if (a[i] <= b[j])
m[i][j] = c(b[j] - a[i] + n - 1, n - 1);
else
m[i][j] = 0;
}
}
for (int i = 1; i < k; ++i) {
if (!m[i][i]) {
for (int j = i + 1; j <= k; ++j) {
if (m[j][i]) {
std::swap(m[i], m[j]);
break;
}
}
}
if (!m[i][i]) continue;
int inv = qpow(m[i][i], mod - 2);
for (int j = i + 1; j <= k; ++j) {
if (!m[j][i]) continue;
int mul = (ll)m[j][i] * inv % mod;
for (int p = i; p <= k; ++p) {
m[j][p] = (m[j][p] - (ll)m[i][p] * mul % mod + mod) % mod;
}
}
}
int ans = 1;
for (int i = 1; i <= k; ++i) ans = (ll)ans * m[i][i] % mod;
printf("%d\n", ans);
}
return 0;
}
|
build本页面最近更新:,更新历史
edit发现错误?想一起完善? 在 GitHub 上编辑此页!
people本页面贡献者:OI-wiki
copyright本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用