二分
本页面将简要介绍二分查找,由二分法衍生的三分法以及二分答案。
二分法¶
简介¶
二分查找(英语:binary search),也称折半搜索(英语:half-interval search)、对数搜索(英语:logarithmic search),是用来在一个有序数组中查找某一元素的算法。
工作原理¶
以在一个升序数组中查找一个数为例。
它每次考察数组当前部分的中间元素,如果中间元素刚好是要找的,就结束搜索过程;如果中间元素小于所查找的值,那么左侧的只会更小,不会有所查找的元素,只需到右侧查找;如果中间元素大于所查找的值同理,只需到左侧查找。
性质¶
时间复杂度¶
二分查找的最优时间复杂度为
二分查找的平均时间复杂度和最坏时间复杂度均为
空间复杂度¶
迭代版本的二分查找的空间复杂度为
递归(无尾调用消除)版本的二分查找的空间复杂度为
代码实现¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | int binary_search(int start, int end, int key) {
int ret = -1; // 未搜索到数据返回-1下标
int mid;
while (start <= end) {
mid = start + ((end - start) >> 1); // 直接平均可能会溢出,所以用这个算法
if (arr[mid] < key)
start = mid + 1;
else if (arr[mid] > key)
end = mid - 1;
else { // 最后检测相等是因为多数搜索情况不是大于就是小于
ret = mid;
break;
}
}
return ret; // 单一出口
}
|
Note
对于 n >> 1
比 n / 2
指令数更少。
最大值最小化¶
注意,这里的有序是广义的有序,如果一个数组中的左侧或者右侧都满足某一种条件,而另一侧都不满足这种条件,也可以看作是一种有序(如果把满足条件看做
要求满足某种条件的最大值的最小可能情况(最大值最小化),首先的想法是从小到大枚举这个作为答案的「最大值」,然后去判断是否合法。若答案单调,就可以使用二分搜索法来更快地找到答案。因此,要想使用二分搜索法来解这种「最大值最小化」的题目,需要满足以下三个条件:
- 答案在一个固定区间内;
- 可能查找一个符合条件的值不是很容易,但是要求能比较容易地判断某个值是否是符合条件的;
- 可行解对于区间满足一定的单调性。换言之,如果
x x + 1 x - 1
当然,最小值最大化是同理的。
STL 的二分查找¶
C++ 标准库中实现了查找首个不小于给定值的元素的函数 std::lower_bound
和查找首个大于给定值的元素的函数 std::upper_bound
,二者均定义于头文件 <algorithm>
中。
二者均采用二分实现,所以调用前必须保证元素有序。
bsearch¶
bsearch 函数为 C 标准库实现的二分查找,定义在 <stdlib.h>
中。在 C++ 标准库里,该函数定义在 <cstdlib>
中。qsort 和 bsearch 是 C 语言中唯二的两个算法类函数。
bsearch 函数相比 qsort(排序相关 STL)的四个参数,在最左边增加了参数“待查元素的地址”。之所以按照地址的形式传入,是为了方便直接套用与 qsort 相同的比较函数,从而实现排序后的立即查找。因此这个参数不能直接传入具体值,而是要先将待查值用一个变量存储,再传入该变量地址。
于是 bsearch 函数总共有五个参数:待查元素的地址、数组名、元素个数、元素大小、比较规则。比较规则仍然通过指定比较函数实现,详见 排序相关 STL。
bsearch 函数的返回值是查找到的元素的地址,该地址为 void 类型。
注意:bsearch 与上文的 lower_bound 和 upper_bound 有两点不同:
- 当符合条件的元素有重复多个的时候,会返回执行二分查找时第一个符合条件的元素,从而这个元素可能位于重复多个元素的中间部分。
- 当查找不到相应的元素时,会返回 NULL。
用 lower_bound 可以实现与 bsearch 完全相同的功能,所以可以使用 bsearch 通过的题目,直接改写成 lower_bound 同样可以实现。但是鉴于上述不同之处的第二点,例如,在序列 1、2、4、5、6 中查找 3,bsearch 实现 lower_bound 的功能会变得困难。
利用 bsearch 实现 lower_bound 的功能比较困难,是否一定就不能实现?答案是否定的,存在比较 tricky 的技巧。借助编译器处理比较函数的特性:总是将第一个参数指向待查元素,将第二个参数指向待查数组中的元素,也可以用 bsearch 实现 lower_bound 和 upper_bound,如下文示例。只是,这要求待查数组必须是全局数组,从而可以直接传入首地址。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | int A[100005]; // 示例全局数组
// 查找首个不小于待查元素的元素的地址
int lower(const void *p1, const void *p2) {
int *a = (int *)p1;
int *b = (int *)p2;
if ((b == A || compare(a, b - 1) > 0) && compare(a, b) > 0)
return 1;
else if (b != A && compare(a, b - 1) <= 0)
return -1; // 用到地址的减法,因此必须指定元素类型
else
return 0;
}
// 查找首个大于待查元素的元素的地址
int upper(const void *p1, const void *p2) {
int *a = (int *)p1;
int *b = (int *)p2;
if ((b == A || compare(a, b - 1) >= 0) && compare(a, b) >= 0)
return 1;
else if (b != A && compare(a, b - 1) < 0)
return -1; // 用到地址的减法,因此必须指定元素类型
else
return 0;
}
|
因为现在的 OI 选手很少写纯 C,并且此方法作用有限,所以不是重点。对于新手而言,建议老老实实地使用 C++ 中的 lower_bound 和 upper_bound 函数。
二分答案¶
解题的时候往往会考虑枚举答案然后检验枚举的值是否正确。若满足单调性,则满足使用二分法的条件。把这里的枚举换成二分,就变成了“二分答案”。
Luogu P1873 砍树
伐木工人米尔科需要砍倒
米尔科的伐木机工作过程如下:米尔科设置一个高度参数
例如,如果一行树的高度分别为
米尔科非常关注生态保护,所以他不会砍掉过多的木材。这正是他尽可能高地设定伐木机锯片的原因。你的任务是帮助米尔科找到伐木机锯片的最大的整数高度
解题思路
我们可以在
参考代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | int a[1000005];
int n, m;
bool check(int k) { // 检查可行性,k 为锯片高度
long long sum = 0;
for (int i = 1; i <= n; i++) // 检查每一棵树
if (a[i] > k) // 如果树高于锯片高度
sum += (long long)(a[i] - k); // 累加树木长度
return sum >= m; // 如果满足最少长度代表可行
}
int find() {
int l = 1, r = 1e9 + 1; // 因为是左闭右开的,所以 10^9 要加 1
while (l + 1 < r) { // 如果两点不相邻
int mid = (l + r) / 2; // 取中间值
if (check(mid)) // 如果可行
l = mid; // 升高锯片高度
else
r = mid; // 否则降低锯片高度
}
return l; // 返回左边值
}
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i++) cin >> a[i];
cout << find();
return 0;
}
|
看完了上面的代码,你肯定会有两个疑问:
-
为何搜索区间是左闭右开的?
因为搜到最后,会这样(以合法的最大值为例):
然后会
合法的最小值恰恰相反。
-
为何返回左边值?
同上。
三分法¶
简介¶
三分法可以用来查找凸函数的最大(小)值。
画一下图能够帮助理解(图待补)
- 如果
lmid
和rmid
在最大(小)值的同一侧:由于单调性,一定是二者中较大(小)的那个离最值近一些,较远的那个点对应的区间不可能包含最值,所以可以舍弃。 - 如果在两侧:由于最值在二者中间,我们舍弃两侧的一个区间后,也不会影响最值,所以可以舍弃。
代码实现¶
1 2 3 4 5 6 | lmid = left + (right - left >> 1);
rmid = lmid + (right - lmid >> 1); // 对右侧区间取半
if (cal(lmid) > cal(rmid))
right = rmid;
else
left = lmid;
|
分数规划¶
参见:分数规划
分数规划通常描述为下列问题:每个物品有两个属性
经典的例子有最优比率环、最优比率生成树等等。
分数规划可以用二分法来解决。
build本页面最近更新:,更新历史
edit发现错误?想一起完善? 在 GitHub 上编辑此页!
people本页面贡献者:OI-wiki
copyright本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用